Soal TPS UTBK matematika - tipe soal: expression
1. Perhatikan bangun di bawah ini!
|
|
a |
|
|
|
b |
|
|
|
|
|
|
b |
|
|
|
|
|
|
b |
|
|
|
|
|
|
|
a |
|
Jika a =2x+5 dan b = x+1 maka
luas bangun di atas adalah …
A. 6x2+21x+15
B. 2x2+7x+5
C. 10x+16
D. 5x+8
E. 3x+6
Jawab:
Pembahasan
Soal:
Luas = 3 x
a x b
= 3
(2x+5)(x+1)
= 3(2x2+7x+5)
= 6x2+21x+15
2. The
following value is equivalent to 4x4-64 is …
A. 2(x2-4)2
B. 2(x2+4)(x+2)(x-2)
C. 4(x2-8)2
D. 4(x3-16)(x+4)
E. 4(x2+4)(x+2)(x-2)
Jawab:
a2
– b2 = (a – b)(a + b)
a4
– b4 = (a2 – b2)(a2 + b2)
4x4-64
= 4 (x4 -16)
= 4 (x4
– 24)
Ingat
persamaan di atas
= 4 (a2
+ b2) (a2 – b2)
= 4 (x2
+ 22)(x2 – 22)
= 4 (x2
+ 22)(x2 – 22)
= 4 (x2
+ 4)(x + 2)(x – 4)
3. If x+y = xy = 5, the result of x4+ y4 is …
A. 25
B. 100
C. 125
D. 175
E. 625
Jawab:
Pembahasan Soal:
x4+ y4 = (x2 + y2)2
– 2x2.y2
= ((x + y)2 – 2xy)2 – 2(x.y)2
= (52 – 2.5)2 – 2.25
= (25 – 10)2 - 50
= 225 – 50
= 175
4. The coefficient of a2 b2 that satisfies (3a-2b)4
is …
A. -216
B. -96
C. 16
D. 81
E. 216
Jawab:
Dengan binominal newton:
1
1 1
1
2 1
1 3 3 1
1 4 6 4 1
Pangkat 4 memiliki koefisien 6
= 6 . (3a)2. (-2b)2
= 6 . 9 . 4 . a2 . b2
= 216
5. Diketahui x+y = 5, xy = 4 dan x > y. Nilai dari x3+y3
adalah …
A. 20
B. 61
C. 65
D. 125
E. 185
Jawab:
Pembahasan Soal:
x = 4
y = 1
x3+y3 = 43 + 13 = 64 + 1 = 65
6. The following value is equivalent to (a+3) 2-2(a+3)(b-5)+(b-5)2
is …
A. (a-b+8)2
B. (a+b+8)2
C. (a-b-2)2
D. (a+b-2)2
E. (a-b+2) 2
Jawab: A
Pembahasan Soal:
(a+3) 2-2(a+3)(b-5)+(b-5)2
= ((a+3) - (b-5))2
= (a - b + 8)2
7. Suatu operasi bilangan dinyatakan dengan (A∆B) = A2-2AB+B2.
Jika A = 3x-1 dan B = 2x+5 maka nilai dari (A∆B) adalah …
A. 25x2+40x+16
B. x2+40x+16
C. 17x2-12x+36
D. x2-12x+36
E. 13x2-12x+36
Jawab: D
Pembahasan soal:
(A∆B) = (A-B)2
= (x - 6)2
= x2 – 12x + 36
8. One of the result of factoring of 16x2-(5x-7)2 is
…
A. (-x+7)
B. (-9x+7)
C. (11x+7)
D. (11x-7)
E. (x+7)
Jawab: A
Pembahasan Soal:
16x2-(5x-7)2
= 16x2 – (25x2 – 70x + 49)
= 16x2 - 25x2 + 70x – 49
= -9x + 70x – 49
= (-x + 7)(9x – 7)
9. Koefisien dari m5 yang memenuhi (1+m)(2+m2)(3+m3)(4+m4)
adalah …
A. 5
B. 8
C. 10
D. 13
E. 17
Jawab: C
koefisien m5 dari perkalian (1+m)(4+m4)
= m4 x m x 2 x 3 = 6m5
koefisien m5 dari perkalian (2+m2)(3+m3)
= m2 x m3 x 1 x 4 = 4m5
Maka:
= 6 m5 + 4m5
= 10m5
10. Jika x + x-1 = 3 maka nilai dari x3 + x-3 adalah …
A. 3
B. 9
C. 18
D. 27
E. 81
Jawab:
Pembahasan:
x + x-1 = 3
(x + x-1)3 = x3+x-3
+ 3(x + x-1)
33 = x3+x-3 + 3(3)
x3+x-3 = 27 – 9 = 18
11. Jika p2 = 13q + 2022 dan q2 = 13p + 2022 maka
nilai dari 2pq adalah …
A. -4382
B. -3706
C. -1853
D. 3706
E. 4382
Jawab:
Pembahasan Soal:
p2 = 13q + 2022
dan
q2 = 13p +2022
substitusi:
p2 - q2 = 13q – 13p
(p + q)(p – q) = 13 (q - p)
(p + q)(p – q) = - 13 (p - q)
p + q = -13
(p + q)2 = p2 + q2 + 2pq
2pq = (p + q)2 – (p2 + q2)
2pq = -132 – (13p +2022 + 13q +2022)
2pq = -132 - (13(p+q) + 4044)
2pq = -132 - (13.(-13) + 4044)
2pq = 169 + 169 – 4044
2pq = -3706
12. Hasil panen Pak Surya tahun ini meningkat 12% lebih banyak dibandingkan
dengan tahun lalu. Banyak jagung hasil panen naik 8% dan banyak padi hasil
panen naik 20%. Persentase banyak nya padi tahun ini adalah …
A. 32%
B. 33,6%
C. 35,7%
D. 36%
E. 36,36%
Jawaban: C
Pembahasan Soal:
(p+j)1,12 = 1,08j + 1,2p
1,12 p + 1,12j = 1,08j + 1,2p
0,04 j = 0,08 p
j = 2p
perbandingan padi dan jagung
p : j = 1 : 2
persentase dari jumlah total:
= (1 : 3) x 100%
= 33,3 %
13. Diketahui p,q,r,s adalah bilangan bulat positif dengan p + q > r
+ s. Jika pr + qs = 43 dan ps + qr = 44, maka nilai dari – q – p + r + s adalah
…
A. -32
B. -26
C. 26
D. 32
E. 41
Jawab:
Pembahasan Soal:
pr + qs + ps + qr = 43 + 44
r (p+q) + s (p+q) = 87
(p+q) (r+s) = 87
Diketahui juga:
p + q > r + s
p + q - ( r + s) > 0
misal p + q = x
dan r + s = y
maka:
x . y = 87
x – y > 0
87/y – y > 0
87 – y2 > 0
y2 < 87
y < √87
y < 9,3
y = 1, 2, 3, 4, 5, 6, 7 , 8, 9
(y bernilai bulat positif )
Untuk
x . y = 87
Ditanya:
– q – p + r + s = -x + y
Untuk
y = 1
x = 87
-x + y = -86
y = 2
x = 43,5
-x + y = - 41,5
y = 3
x = 29
-x + y = -26
14. Jika
4a2 = 4a+28b dan 3b2 = 21a+3b, maka nilai dari √(a2+b2+64)
adalah …
A. 1
B. 3
C.
4
D. 6
E. 8
Jawab:
Pembahasan:
4a2 =
4a+28b
a2 =
a+7b
3b2 =
21a+3b
b2 =
7a+b
a2 + b2
= a+7b + 7a+b
= 8a + 8b
= 8 (a+b)
a2 - b2 = a+7b - 7a - b
a2 - b2 = -6a + 6b
(a+b)(a-b) = -6 (a-b)
(a+b) = -6
Ditanya:
√(a2+b2+64)
= √8(a+b) + 64
= √8 (-6) + 64
= √-48 + 64
= √16
= 4
0 Comments